热点资讯
jk 黑丝 【环境君】一文读懂生物矿化时间发布日期:2025-07-04 11:35 点击次数:193
图片
咱们皆知说念,重金属不错通过地下水、空气、泥土参预到咱们的食品链中,进而冷静在东说念主体内集中,变成恫吓。因此,科学家们启动探索不同的开荒时间,其中就有生物矿化时间,简而言之,等于让微生物将重金属吃掉,再转为无机矿物千里淀排放出来,那么接下来,我将先容生物矿化时间在重金属开荒中的最新发达。图片
(重金属参预东说念主体的全历程)
生物矿化按照其生成物不错阔别为两类,分别是碳酸盐千里淀类和磷酸盐千里淀类。一、碳酸盐千里淀类(MICP)
现在来讲,有许多种微生物不错将重金属转机为碳酸盐千里淀,如细菌【1】【2】【3】、真菌【4】或酶【5】【6】。而其中的机理主要为三种,分别是尿素水解【7】、反硝化【8】、硫酸盐归附【9】,其中尿素水解法具有易截止、后果高、本钱低等优点,约略灵验固定碳酸盐矿物中的金属,且不受金属价态、毒性和氧化归附电位的影响,因此备受顺心。图片
(MICP开荒重金属机理线路图)二、磷酸盐千里淀类(MIPP)
雷同,能将重金属教唆为磷酸盐千里淀的微生物也有三种,如细菌【10】【11】【12】、真菌【13】、酶【14】,具体机制为微生物将磷源转机为磷酸根离子,与重金属规划生成千里淀,公式如下:图片
色吧性爱现在,大多数研究汇聚在溶磷菌上,而溶磷菌的磷源有2种,如2-磷酸甘油【15】、肌醇六磷酸酯【16】等可溶性有机磷,或者是磷矿石【17】等无机磷酸盐。当环境中有有机磷源时,溶磷菌会分泌磷酸酶,催化磷酸酯键的水解,从而理会有机磷;而当无机磷源多时,溶磷菌则会分泌草酸、柠檬酸等有机酸,缩小泥土pH值并熔解无机磷酸盐。图片
(溶磷菌分泌肌醇六磷酸酯与铜离子规划生成磷酸盐千里淀【16】)
那么什么成分会影响微生物的矿化历程呢?成分一:微生物/酶的专一性
生物矿化时间中最进军的细则是微生物,是以微生物的专一性关于重金属开荒历程格外进军。大皆训导标明,浑浊泥土中时时能分离出相应的科罚细菌,如有研究者从含铅矿山肥料等分离出耐铅细菌【18】,这种细菌对铅的生物矿化有很高的反映后果。此外,能产生脲酶的细菌,如巴氏杀菌菌【19】【20】,约略同期千里淀多种重金属,即使细菌对金属不耐受。当你要去除海水中的重金属时,难免头疼,因为陆地上的开荒细菌在高盐度海水中皆弗成存活,因此,有科学家左证“毒药傍边时时滋长着解药”的原则,从海洋千里积物等分离出耐盐碱细菌,不错通过生物矿化去除锶这种金属。成分二:重金属浓度
高浓度的重金属会对细胞内卵白质和核酸产生较大毒性【21】,导致脲酶产量下落,进而影响生物矿化进度。成分三:pH值
重金属的去除后果取决于pH值,其中低pH值会扼制微生物的活性。参考文件
【1】M. Li, X.H. Cheng, H.X. Guo Heavy metal removal by biomineralization of urease producing bacteria isolated from soil International Biodeterioration & Biodegradation, 76 (2013), pp. 81-85.【2】Q.H. Yu, Y.H. Yuan, L.J. Feng, W.Y. Sun, K. Lin, J.C. Zhang, Y.B. Zhang, H. Wang, N. Wang, Q. Peng Highly efficient immobilization of environmental uranium contamination with Pseudomonas stutzeri by biosorption, biomineralization, and bioreduction Journal of Hazardous Materials, 424 (2022), Article 127758.【3】T. Lu, Z.A. Wei, M. Hesham El Naggar, W.S. Wang, Y.H. Yang Effect of chemical environment on copper tailings reinforced by microbially induced carbonate precipitation Construction and Building Materials, 400 (2023), Article 132894.【4】N.K. Dhami, M.E.C. Quirin, A. Mukherjee Carbonate biomineralization and heavy metal remediation by calcifying fungi isolated from karstic caves Ecological Engineering, 103 (2017), pp. 106-117.【5】A.A.B. Moghal, R.M. Rasheed, S.A.S. Mohammed Sorptive and desorptive response of divalent heavy metal ions from EICP-treated plastic fines Indian Geotechnical Journal, 53 (2) (2023), pp. 315-333.【6】L. Wang, W.C. Cheng, Z.F. Xue, B. Zhang, X.J. Lv Immobilizing of lead and copper using chitosan-assisted enzyme-induced carbonate precipitation Environmental Pollution, 319 (2023), Article 120947.【7】A. Al Qabany, K. Soga Effect of chemical treatment used in MICP on engineering properties of cemented soils Géotechnique, 63 (4) (2013), pp. 331-339.【8】L.A. van Paassen, C.M. Daza, M. Staal, D.Y. Sorokin, W. van der Zonb, M.C.M. van Loosdrecht Potential soil reinforcement by biological denitrification Ecological Engineering, 36 (2010), pp. 168-175.【9】M. Zhang, J. Xiong, L. Zhou, J.J. Li, J.Q. Fan, X. Li, T. Zhang, Z.Z. Yin, H.Q. Yin, X.D. Liu, D.L. Meng Community ecological study on the reduction of soil antimony bioavailability by SRB-based remediation technologies Journal of Hazardous Materials, 459 (2023), Article 132256.【10】Y. Zhao, J. Yao, Z. Yuan, Z. Wang, T. Zhang, Y, F. Wang Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation Environmental Science and Pollution Research, 24 (1) (2017), pp. 372-380.【11】X.N. Yu, J.G. Jiang Phosphate microbial mineralization consolidation of waste incineration flyash and removal of lead ions Ecotoxicology and Environmental Safety, 191 (2020), Article 110224.【12】Y.C. Zhou, X.Q. Zhao, Y. Jiang, C.C. Ding, J.G. Liu,C. Zhu Synergistic remediation of lead pollution by biochar combined with phosphate solubilizing bacteria Science of the Total Environment, 861 (2023), Article 160649.【13】E. Coelho, T.A. Reis, M. Cotrim, T. Mullan, T.K. Renshaw, M. J. Rizzutto, B. Corrêa Talaromyces amestolkiae uses organic phosphate sources for the treatment of uranium‑contaminated water Biometals, 35 (2022), pp. 335-348.【14】L.J. Han, J.S. Li, Q. Xue, M.Z. Guo, P. Wang, C.S. Poon Enzymatically induced phosphate precipitation (EIPP) for stabilization/solidification (S/S) treatment of heavy metal tailings Construction and Building Materials, 314 (2022), Article 125577.【15】E. Coelho, T.A. Reis, M. Cotrim, T. Mullan, T.K. Renshaw, M. J. Rizzutto, B. Corrêa Talaromyces amestolkiae uses organic phosphate sources for the treatment of uranium‑contaminated water Biometals, 35 (2022), pp. 335-348.【16】X.M. Zhao, H.T. Do, Y. Zhou, Z. Li, X.F. Zhang, S.J. Zhao, M.T. Li, D. Wu Rahnella sp. LRP3 induces phosphate precipitation of Cu (II) and its role in copper-contaminated soil remediation Journal of Hazardous Materials, 368 (2019), pp. 133-140.【17】Z. Zhang, G.L. Guo, M. Wang, J. Zhang, Z.X. Wang, F.S. Li, H.H. Chen Enhanced stabilization of Pb, Zn, and Cd in contaminated soils using oxalic acid-activated phosphate rocks Environmental Science and Pollution Research, 25 (2018), pp. 2861-2868.【18】W. Mwandira, K. Nakashima, S. Kawasaki, M. Ito, T. Sato, T. Igarashi, M. Chirwa,K. Banda, I. Nyambe Solidification of sand by Pb(II)-tolerant bacteria for capping mine waste to control metallic dust: Case of the abandoned Kabwe Mine, Zambia Chemosphere, 228 (2019), pp. 17-25.【19】N. Jalilvand, A. Akhgar, H.A. Alikhani, H.A. Rahmani, F. Rejali Removal of heavy metals zinc, lead, and cadmium by biomineralization of urease-producing bacteria isolated from iranian mine calcareous soils Journal of Soil Science and Plant Nutrition, 20 (2020), pp. 206-219.【20】S. Qiao, G. Zeng, X. Wang, C. Dai, M. Sheng, Q. Chen, F. Xu, H. Xu Multiple heavy metals immobilization based on microbially induced carbonate precipitation by ureolytic bacteria and the precipitation patterns exploration Chemosphere, 274 (2021), Article 129661.【21】M. Xu, J. Ma, X.H. Zhang, G. Yang, L.L. Long, C. Chen, C. Song, J. Wu, P. Gao, D.X. Guan Biochar-bacteria partnership based on microbially induced calcite precipitation improves Cd immobilization and soil function Biochar, 5 (2023), p. 20.开头:Biogeotechnics;整理:环境君jk 黑丝。
本站仅提供存储事业,通盘骨子均由用户发布,如发现存害或侵权骨子,请点击举报。